Google Research

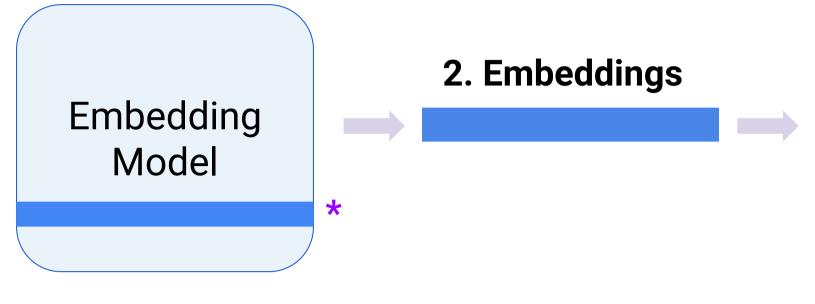
Embedding Models Process (Private) Non-numerical Inputs

- Non-numerical data
- Demographic data

Recommendation Tasks

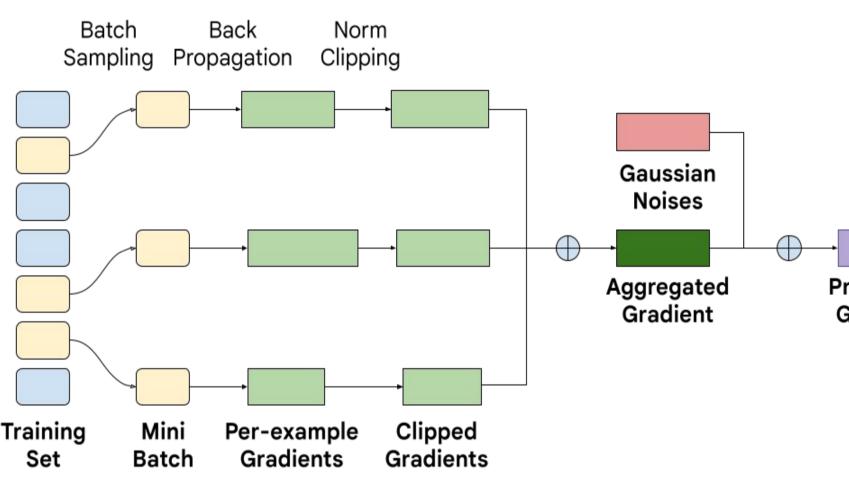
Utility compared to DP-SGD

- Private chats
- Medical history
- **_** ...

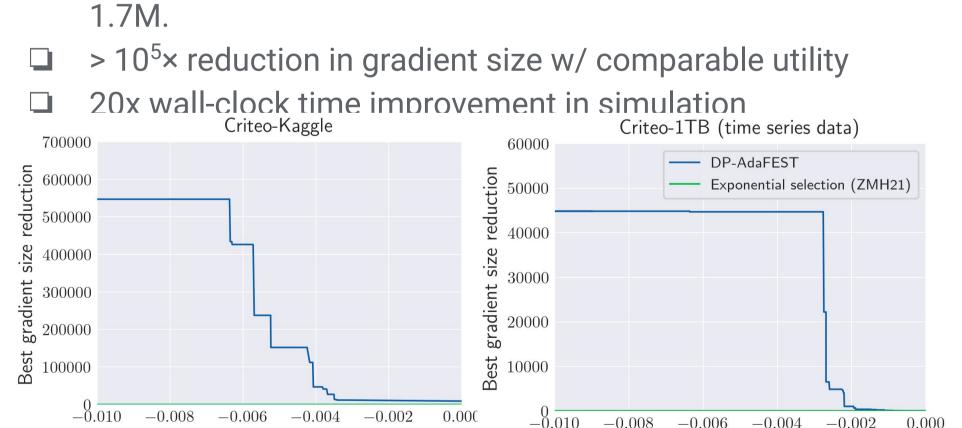


* sparse lookup \rightarrow sparse gradients (leveraged by customized APIs such as Google TPUs for efficiency)

Protect Privacy: Differentially Private SGD (DP-SGD) [1] Our Main Contributions: Adds Dense Noise to Gradients to Protect Privacy



sparse gradients \rightarrow **dense** gradients (more computation)



Utility compared to DP-SGD

Criteo-Kaggle & Criteo-1TB (Time-series). Vocab size:

Natural Language Understanding Tasks

- SST, QNLI, QQP from GLUE benchmark [2]. Vocab size: ~50k
- ~50x reduction in gradient size w/ comparable utility (due to already condensed vocabulary)

Sparsity-Preserving Differentially Private Training of Large Embedding Models

Badih Ghazi¹, Yangsibo Huang^{1, 2, 3}, Pritish Kamath¹, Ravi Kumar¹, Pasin Manurangsi¹, Amer Sinha¹, Chiyuan Zhang¹ ¹Google Research ² Princeton University ³ Princeton Language and Intelligence

3. Downstream tasks

Recommender systems Chatbots

ML-powered diagnosis

We propose sparsity-preserving DP training algorithms for Large Embedding Models and achieve: **Recommendation tasks**

- \star > 10⁵ × reduction in gradient size in recommendation tasks (# non-zero embedding gradients rows) while maintaining accuracy
- \star Translates to > 20x wall-clock time improvement

Privatized Gradient

Natural language understanding tasks

- \star > 50x gradient size reduction while maintaining accuracy
- \star Outperforms the LoRA method [3]
- ★ Larger improvements in multilingual models

Comparison w/ LoRA [3]

- DP-AdaFEST achieves sparser gradients compared to LoRA, which adapts weight matrices using low-rank approximation
- DP-AdaFEST benefits from the efficient embedding lookup via customized APIs. LoRA would not be able to leverage them (it requires relatively expensive matrix multiplication)

Acc. compared to DP-SGD	Best gradient size reduction	
	DP-AdaFEST	LoRA
-0.001	17.41×	5.91×
-0.005	62.14×	23.64×
-0.01	62.14×	47.28×

Larger Improvement on Multilingual Models

Acc. compared to DP-SGD	Best gradient size reduction	
	RoBERTa (V : 50k) [4]	XLM-R (V : 200k) [5]
-0.001	17.41×	19.84×
-0.005	62.14×	73.42×
-0.01	62.14×	162.13×

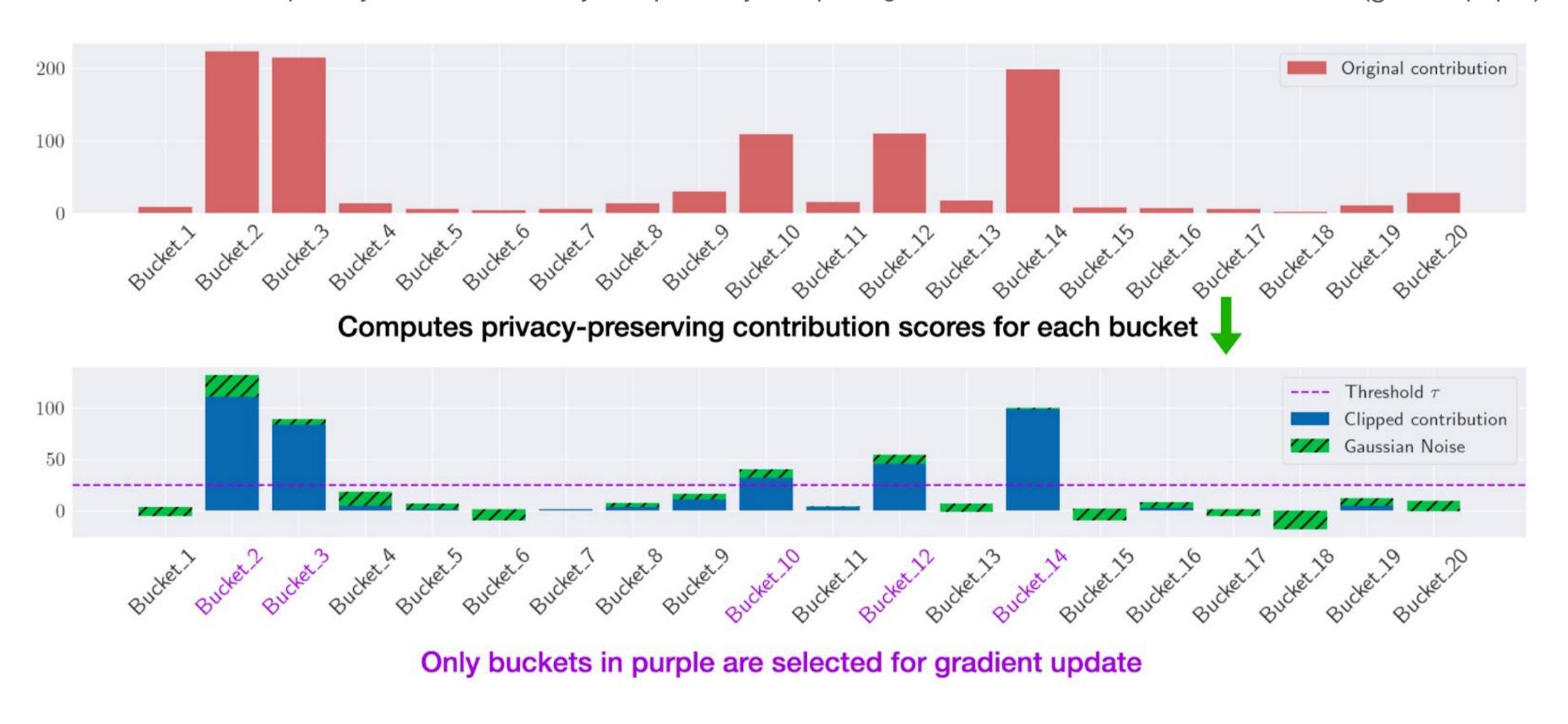
References

Our Proposal: Adaptive Filtering-Enabled Sparse Training (DP-AdaFEST)

We extend standard DP-SGD with an extra mechanism at each iteration to privately select the "top features":

Compute how many examples **contributed** to each non-numerical feature "bucket"; Restrict the total contribution from each example by **clipping** their counts; Add Gaussian noise to the contribution count of each feature bucket; **Select** only the features to be included in the gradient update that have a count above a given

DP-AdaFEST is DP: the privacy cost can be easily computed by composing it with the standard DP-SGD iterations (§ 3.3 in paper)



Takeaways

- U We effectively address the "destroyed gradient sparsity" challenge when applying general-purpose DP-SGD to large-scale embedding models, via the proposal of **DP-AdaFEST**.
- DP-AdaFEST achieves a substantially sparser gradient in recommendation tasks, with a reduction in gradient size of over 10⁵× (translates into 20x wall-clock time improvement) compared to the dense gradient produced by vanilla DP-SGD, while maintaining comparable levels of accuracy.
- DP-AdaFEST is also more effective than LoRA in reducing the gradient size when applied to natural language understanding tasks.

Future Work

- Leverage specialized hardware to further optimize the computational performance and speed up the training
- Integration of our methods with non-centralized training paradigms (e.g., Federated Learning)
- [1] Deep Learning with Differential Privacy. Abadi et al., CCS 2016
- [2] GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. Wang et al., ICLR 2019 [3] LoRA: Low-rank Adaptation of Large Language Models. Hu et al., ICLR 2022
- [4] RoBERTa: A Robustly Optimized BERT Pretraining Approach. Liu et al., arxiv preprint 2019 [5] Unsupervised Cross-lingual Representation Learning at Scale. Conneau et al., ACL 2020

- threshold (a sparsity-controlling parameter) to be included in the gradient update, thus maintaining sparsity.